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Abstract
We construct special solutions of the Hirota–Miwa equation for which the
τ -function is a polynomial in the independent variables. Three different
methods are presented: direct construction (obtained also as a limit of the soliton
solutions), and the derivation of the solutions in two different determinant
forms, namely Grammian and Casorati. Introducing the appropriate ansatz, we
write the Hirota–Miwa equation in a nonlinear form for a single variable. In
terms of the latter, the solutions obtained are rational and are reminiscent of
the lump solutions for the continuous analogue of the Hirota–Miwa equation,
namely the KP equation.

PACS numbers: 02.30.Ik, 02.30.Jr

1. Introduction

Constructing explicit solutions of integrable evolution equations is particularly interesting both
from a mathematical and a physical point of view. While the general solution is, in principle,
obtained from a linear (usually integrodifferential) system, the explicit solutions allow one to
form a clear mental picture of the dynamics of the evolution. In some cases, in fact, as in the
case of solitons, these solutions incorporate the essential features of the dynamics. In other
cases, as the special solutions of Painlevé equations, the singularity structure of the general
solution reflects itself in the singularities of the solutions explicitly constructed. These facts
explain the intense activity around the derivation of explicit solutions of integrable equations.
It was through the observation of the existence of elastically interacting solitary waves that the
KdV equation was first identified as a candidate (subsequently confirmed) for integrability.

* This work is dedicated to the memory of our mentor, Martin D Kruskal, zal.
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The existence of N-soliton solutions for a given partial differential equation (PDE) is nowadays
considered as an integrability criterion.

In this paper, we shall examine a family of special solutions of the discrete analogue of
the KP equation. The familiar, continuous form of the latter is:

∂x(ut + 6uux + uxxx) + σuyy = 0 (1.1)

where σ = ±1. Traditionally, the equation obtained with σ = −1 is called KP I, and the one
for σ = +1, KPII. While the KPII equation possesses stable soliton solutions, KPI does not.
On the other hand, the latter has localized solutions that decay algebraically as x2 + y2 → ∞
and are called lumps. The lumps are part of a larger class of solutions which are rational
functions of the independent variables. The particular character of the lumps resides in the
fact that they are localized i.e., decrease at infinity and do not diverge. The lump solutions of
KPI have been first obtained by Ablowitz and Satsuma [1]. Rational solutions, not included
in the lump family were (almost simultaneously) obtained by Johnson and Thompson [2]. In
a subsequent publication [3], Satsuma and Ablowitz gave the form of the N-lump solution of
KPI. Localized structures in integrable evolution equations have also been studied by Fokas
and Santini in [4]. In more recent studies [5], Ablowitz and collaborators have examined the
lump solutions of KPI in an inverse scattering transform perspective. Dubrowsky in [6] has
focussed on KPII and derived its rational, pole-like solutions.

While those studies have concentrated on the continuous KP equation, semi-continuous,
differential-difference systems have also attracted attention over the years. Carstea [7] has
studied the rational solutions of the discrete 1+1 Volterra equation while Villaroel, Chakravarty
and Ablowitz [8] analysed the 2+1 Volterra system developing the inverse scattering transform
and obtaining special solutions. Tam, Hu and Chian [9] have examined a host of (2+1)-
dimensional lattices (in two continuous and one discrete variables) and derived their rational
solutions. Curiously, the fully discrete analogue of the KP equations, which has been proposed
independently by Hirota and Miwa (and which is deservedly known as the Hirota–Miwa (HM)
equation) has not been studied from the point of view of the existence of rational solutions.
These solutions will be the object of the present paper.

The HM equation is traditionally given in a bilinear form. One introduces the tau-
function τ , which, as is well known, is often expressible as an entire function, and writes the
HM equation as

(b − c)τkτmn + (c − a)τmτnk + (a − b)τnτmk = 0 (1.2)

where τk ≡ τ(k + 1,m, n), τmn ≡ τ(k,m + 1, n + 1) and similarly for the other indices. This
particular gauge, where the sum of the coefficients is zero, is due to Hirota and ensures that
a constant τ is a solution of (1.2). This constant solution represents the vacuum, i.e., the
solution upon which all others will be built. We must stress here that this choice of coefficients
is just one special gauge. It is indeed possible to put the three coefficients to any nonzero
value without loss of generality. As a matter of fact, this goes even beyond the case where
the coefficients are constant. As we have shown in [10–12] all integrable nonautonomous
extensions of the HM equation can be gauge-reduced to an autonomous form with arbitrary
coefficients.

In what follows, we shall construct the rational solutions of the HM equation, which
in terms of τ are just polynomial solutions. We shall present the Grammian and Casorati
determinant form of these solutions. Finally, introducing the adequate ansatz, we shall give a
nonlinear form of the HM and present the solutions for the nonlinear variables.
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2. A direct construction

Deriving rational solutions of the Hirota–Miwa equation is quite straightforward, provided
one uses the adequate ansatz. Here we look for polynomial solutions, the first of which can
be obtained starting from

τ(n,m, k) = Ak + Bm + Cn + D. (2.1)

Substituting (2.1) into (1.2) we find that the coefficients A,B,C must satisfy the dispersion
relation

b − c

A
+

c − a

B
+

a − b

C
= 0. (2.2)

The higher solutions can be constructed along the same lines one follows for the derivation of
the soliton solutions. We start by introducing the quantity Li = Aik + Bim + Cin + Di .
Solution (2.1) is thus simply τ (1) = L1. Before proceeding further we can introduce
a simplification which will make calculations more manageable. Since the Hirota–Miwa
equation is homogeneous we can apply a global scaling of τ and put Ci = 1. There is no
loss of generality here since Ci = 0 would entail (a − b)AiBi = 0 and if a = b (1.2) would
not be a genuine Hirota–Miwa equation, while AiBi = 0 in combination with Ci = 0 would
lead to too poor a solution. Moreover, we can solve the dispersion relation for Bi and thus Li

contains just one effective parameter Ai .
With these simplifications, we proceed to the construction of the next polynomial solution.

We find

τ (2) = L1L2 + M12. (2.3)

Substituting into (1.2) we find that (2.3) is indeed a solution provided M12 satisfies the relation

M12 = A1A2(1 − A1)(1 − A2)

(A1 − A2)2
. (2.4)

While we can proceed to the construction of the higher polynomial solutions in a
straightforward way it is interesting at this stage to link this construction to that of the
soliton solutions of Hirota–Miwa the existence of which is well established. Indeed we can
start from the one-soliton solution τ = 1 + θ where θ = δαkβmγ n. The α, β, γ obey the
dispersion relation D(α, β, γ ) = (b − c)(βγ + α) + (c − a)(αγ + β) + (a − b)(αβ + γ ) = 0.
Putting α = 1 + εA, β = 1 + εB, γ = 1 + εC and taking the limit ε → 0 while choosing
δ = −1 + εD we obtain for τ the first polynomial solution (2.1) while we can easily verify
that the dispersion relation D(α, β, γ ) = 0 goes over to (2.2). The quadratic solution (2.3)
can be obtained from the two-soliton solution. We start from τ = 1 + θ1 + θ2 + µ12θ1θ2 where
µ12 is given by µ12 = −α2β2γ2D(α1/α2, β1/β2, γ1/γ2)/D(α1α2, β1β2, γ1γ2). We apply the
same ansatz as above for αi, βi, γi , take the limit ε → 0 and obtain precisely (2.3) where M12

is obtained from µ12 through µ12 = 1 + ε2M12.
Just as in the case of soliton solutions, M12 will be the building block of the higher

polynomial solutions of the Hirota–Miwa equation. We thus have

τ (3) = L1L2L3 + M12L3 + M13L2 + M23L1 (2.5)

at order three (with obvious expressions for Mij ). We remark that no new quantity enters
at this order and everything is fixed by the solution at order two. This was expected since
the three-soliton solution is expressed in terms of the µij defined at order two, without the
introduction of any new quantity. The limit ε → 0 preserves this property, and leads exactly
to (2.5). In the same way we find, at order four, the expression

τ (4) = L1L2L3L4 + M12L3L4 + M13L2L4 + M23L1L4 + M14L2L3 + M24L1L3

+ M34L1L2 + M12M34 + M13M24 + M14M23. (2.6)
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This expression is again what one obtains from the 4-soliton solution in the limit ε → 0.
Thus the polynomial solutions of the Hirota–Miwa equation can be constructed at any order
in an algorithmic way by writing the homogeneous symmetrical combination of Li,Mij (with
weight 2 for the Mij ).

3. The Grammian solutions

The polynomial solutions (2.1), (2.3), (2.5), (2.6) we constructed in the previous section,
have a natural representation as Gramm-type determinants. It is well known [13, 14] that the
Hirota–Miwa equation (1.2) possesses Grammian solutions, formulated in terms of so-called
(vacuum) eigenfunctions ϕ and (vacuum) adjoint eigenfunctions ϕ∗, i.e. functions that satisfy
the dispersion relations:

�−
k ϕ = �−

mϕ = �−
n ϕ, �kϕ

∗ = �mϕ∗ = �nϕ
∗ (3.1)

where the operators �− and � represent resp. backward (�−
k f (k,m, n) = a[f (k,m, n) −

f (k − 1,m, n)], etc) and forward difference operators (e.g. �mf (k,m, n) = b[f (k,m +
1, n) − f (k,m, n)], etc). In terms of N pairs of such functions we define N2 Grammian
elements �(ϕi, ϕ

∗
j ) (i, j = 1, . . . , N) as the potentials that satisfy the following conditions:

�−
k �(ϕi, ϕ

∗
j ) = ϕi(k,m, n)ϕ∗

j (k − 1,m, n), �−
m�(ϕi, ϕ

∗
j ) = ϕi(k,m, n)ϕ∗

j (k,m − 1, n),
�−

n �(ϕi, ϕ
∗
j ) = ϕi(k,m, n)ϕ∗

j (k,m, n − 1). This overdetermined set of equations is
compatible because of (3.1). The determinant obtained from these Grammian elements

τ =

∣∣∣∣∣∣∣∣∣

�(ϕ1, ϕ
∗
1 ) �(ϕ1, ϕ

∗
2 ) · · · �(ϕ1, ϕ

∗
N)

�(ϕ2, ϕ
∗
1 ) �(ϕ2, ϕ

∗
2 ) · · · �(ϕ2, ϕ

∗
N)

...
...

...

�(ϕN, ϕ∗
1 ) �(ϕN, ϕ∗

2 ) · · · �(ϕN, ϕ∗
N)

∣∣∣∣∣∣∣∣∣
(3.2)

can then be shown to satisfy the Hirota–Miwa equation [13, 14].
To construct the polynomial solutions we obtained in the previous section, we choose the

following eigenfunctions and adjoint eigenfunctions:

ϕi =
(

a

αi

)k (
b

βi

)m (
c

γi

)n

, ϕ∗
i = 1

ϕi

(i = 1, . . . , N) (3.3)

where the parameters αi, βi and γi are required to satisfy the dispersion relations: a − αi =
b − βi = c − γi .

For these functions one immediately finds that �−
k �(ϕi, ϕ

∗
i ) = a/αi,�

−
m�(ϕi, ϕ

∗
i ) =

b/βi and �−
n �(ϕi, ϕ

∗
i ) = c/γi , and hence the diagonal elements of the Grammian determinant

�ii = �(ϕi, ϕ
∗
i ) are obviously given by:

�ii = k

αi

+
m

βi

+
n

γi

+ θi (i = 1, . . . , N) (3.4)

where θi are arbitrary constants.
The off-diagonal elements �ij = �(ϕi, ϕ

∗
j ) (i �= j) are also easily calculated:

i �= j : �ij = ωij

(
αj

αi

)k (
βj

βi

)m (
γj

γi

)n

+ θij (3.5)

with arbitrary constants θij and with pre-factors ωij given by:

ωij = 1

αj − αi

= 1

βj − βi

= 1

γj − γi

(3.6)
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(these last equalities being satisfied by virtue of the dispersion relations for the parameters
αi, βi, γi).

Hence, the Grammian determinant τN = |�ij |i,j=1,...,N , with elements �ij as given by
(3.4) and (3.5) yields a solution for the HM equation if αi, βi and γi satisfy: a −αi = b−βi =
c − γi . These solutions are related to the polynomial ones presented in section 2 of the paper
in the following way.

As one can always multiply τ in the HM equation by a constant without changing the fact
that it is a solution, we define a new solution τ (N) to (1.2) as: τ (N) = (∏N

i=1 γi

)
τN . We also

define:

Li = γi�ii ≡ Aik + Bim + n + Di (3.7)

with parameters

Di = γiθi, Ai = 1 +
c − a

αi

, i.e. αi = a − c

1 − Ai

(3.8)

and

Bi = (a − c)Ai

(a − b)Ai + (b − c)
(3.9)

taking into account the dispersion relations for αi, βi, γi . Note that Bi as given by (3.9)
immediately satisfy condition (2.2). It can also be easily verified from (3.6) that

γiωij = Ai(1 − Aj)

Aj − Ai

. (3.10)

Hence, setting all off-diagonal constants θij = 0 in τ (N), it can be seen that the determinant
|�ij |i,j=1,...,N is explicitly independent of the exponential functions that appear in (3.5) and,
upon multiplication of every row by the appropriate factor (i.e., multiplying the ith row by
γi), we find that

τ (N) = |Tij |i,j=1,...,N (3.11)

for

Tii = Li, Tij = Ai(1 − Aj)

Aj − Ai

(i �= j) (3.12)

is a solution of the HM equation, for general size N. This Grammian determinant coincides
exactly with the cases N = 1, 2, 3, 4 constructed by the direct method in section 2 of the
paper.

4. The Casorati solutions

Solutions to the Hirota–Miwa equation often also permit a representation as Casorati-type
determinants. In general one can show (see again [13, 14]) that the following determinant
satisfies the Hirota–Miwa equation (1.2) :

τ(ϕ1, . . . , ϕN) =

∣∣∣∣∣∣∣∣∣

ϕ1 �−
k ϕ1 (�−

k )2ϕ1 · · · (�−
k )N−1ϕ1

ϕ2 �−
k ϕ2 (�−

k )2ϕ2 · · · (�−
k )N−1ϕ2

...
...

...
...

ϕN �−
k ϕN (�−

k )2ϕN · · · (�−
k )N−1ϕN

∣∣∣∣∣∣∣∣∣
. (4.1)

The ϕi (i = 1, . . . , N) are (vacuum) eigenfunctions, i.e. functions that satisfy the dispersion
relations (3.1) for backward difference operators �−. Note that due to these dispersion
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relations, the above definition in fact does not depend on the precise independent variable
that is used to define the difference operators that appear in it: one could just as well use the
variables m or n instead.

A fundamental property of the Hirota–Miwa equation is that it is gauge-invariant, namely
that one can multiply τ by the exponential of an arbitrary linear function of k,m and n. This
gauge invariance combined with the determinant form of τ allows us to multiply each row in
the determinant by the exponential of an arbitrary linear function of k,m and n. We are thus
led to adopt as the eigenfunctions ϕi that define the Casorati determinant, products of the Li

defined in (3.7) (i.e. with parameters Bi given by (3.9) in terms of Ai) with some appropriate
gauge factors ψi and in which we explicitly write the arbitrary constant term in the polynomial
as Di + δi (for some extra constants δi which remain to be determined):

φi = (Li + δi)ψi, ψi =
(

a − c

a(1 − Ai)

)−k (
(a − c)Ai

bBi(1 − Ai)

)−m (
(a − c)Ai

c(1 − Ai)

)−n

. (4.2)

It is easily verified that �−
k (φi) = �−

m(φi) = �−
n (φi) = c−aAi

1−Ai
φi + (a−c)Ai

1−Ai
ψi and hence, that

φi are indeed eigenfunctions that will define a solution of type (4.1). In fact, one has that
(p = 0, 1, 2, . . .)

(�−
k )pφi =

(
c − aAi

1 − Ai

)p [
φi + p

(a − c)Ai

c − aAi

ψi

]
. (4.3)

For simplicity we introduce the following shorthand notation:

ρi = c − aAi

1 − Ai

, σi = (a − c)Ai

c − aAi

(4.4)

in terms of which we can write the (i, j)th element of the Casorati determinant τ(φ1, . . . , φN)

(as defined in (4.1)) as

(ρi)
j−1[Li + δi + (j − 1)σi]ψi. (4.5)

Hence, taking advantage of the fundamental gauge invariance of the solutions of the Hirota–
Miwa equation, we can gauge away the factors ψi that appear in the rows of τ(φ1, . . . , φN)

and we thus obtain a Casorati determinant τ̃ (φ1, . . . , φN) = τ(φ1, . . . , φN)
∏N

i=1 ψ−1
i whose

elements now only contain polynomial expressions in k,m and n. Unfortunately, this
determinant is—at least at first sight—not of the form (3.11), (3.12). It is however not
difficult to see that by taking appropriate linear combinations of the columns, this determinant
can be re-cast into the required form (i.e. into a form where Li’s only appear on the diagonal,
the off-diagonal elements being all constant) if δi take some very precise (and unique) values.
As there are only N of them, these particular values of δi are in fact already fully determined
if one requires that the Casorati determinant τ̃ (φ1, . . . , φN) does not contain any terms of the
form

∏N
i=1,i �=k Li (for k = 1, . . . , N ). In fact, the coefficient of such a term (for general k) can

be expressed in terms of the Vandermonde determinant V (ρ1, . . . , ρn) = ∏N
i,j=1,j>i(ρj −ρi):

δkV (ρ1, . . . , ρn) + σkρk∂ρk
V (ρ1, . . . , ρn). (4.6)

Hence, in order for these coefficients to be zero, one finds that the constants δi have to take
the values

δi = σiρi

N∑
j=1,j �=i

1

ρj − ρi

(i = 1, . . . , N). (4.7)

Using the explicit forms of ρi and σi (4.4), one finds that ρj −ρi = (a−c)(Ai−Aj )

(1−Ai)(1−Aj )
and hence

that

δi = Ai

N∑
j=1,j �=i

1 − Aj

Ai − Aj

(i = 1, . . . , N). (4.8)
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For example, at N = 2 this yields δ1 = A1
1−A2
A1−A2

, δ2 = A2
1−A1
A2−A1

, for which one finds that

τ̃ (φ1, φ2) = (ρ2 − ρ1)

[
L1L2 +

ρ1ρ2σ1σ2

(ρ1 − ρ2)2

]
= (ρ2 − ρ1)[L1L2 + M12] (4.9)

with M12 as in (2.4); i.e. up to a constant multiple one obtains the function τ (2) as given
in (2.3).

Similarly, for N = 3 one finds that δ1 = A1
[ 1−A2

A1−A2
+ 1−A3

A1−A3

]
, δ2 = A2

[ 1−A1
A2−A1

+ 1−A3
A2−A3

]
,

δ3 = A3
[ 1−A1

A3−A1
+ 1−A2

A3−A2

]
and accordingly that

τ̃ (φ1, φ2, φ3) = V (ρ1, ρ2, ρ3)

[
L1L2L3 +

ρ2ρ3σ2σ3

(ρ2 − ρ3)2
L1 +

ρ1ρ3σ1σ3

(ρ1 − ρ3)2
L2 +

ρ1ρ2σ1σ2

(ρ1 − ρ2)2
L3

]
(4.10)

which is a constant multiple of τ (3) as given in (2.5).
In general one finds that τ (N) as given by the Grammian determinant (3.11), is actually

(gauge-) equivalent to a Casorati-type solution to the Hirota–Miwa equation:

τ (N) = V (ρ1, . . . , ρN)−1

∣∣∣∣∣∣∣∣∣

L1 + δ1 (L1 + δ1 + σ1)ρ1 · · · (L1 + δ1 + (N − 1)σ1)ρ
N−1
1

L2 + δ2 (L2 + δ2 + σ2)ρ2 · · · (L2 + δ2 + (N − 1)σ2)ρ
N−1
2

...
...

...

LN + δN (LN + δN + σN)ρN · · · (LN + δN + (N − 1)σN)ρN−1
N

∣∣∣∣∣∣∣∣∣
(4.11)

iff δi take values (4.8).

5. The nonlinear form of the Hirota–Miwa equation

While the construction of the solutions of the Hirota–Miwa equation in terms of τ is most
fundamental, it is also interesting to obtain these solutions for the nonlinear form in which the
Hirota–Miwa equation can be cast. Starting from (1.2) we multiply by τ and divide by the
product τkτmτn. We obtain thus the equation

(b − c)
ττmn

τmτn

+ (c − a)
ττkn

τkτn

+ (a − b)
ττkm

τkτm

= 0. (5.1)

Next we introduce the three nonlinear variables

x = (b − c)
ττmn

τmτn

, y = (c − a)
ττkn

τkτn

, z = (a − b)
ττkm

τkτm

. (5.2)

Given the definition of x, y, z, we can easily show that
xk

x
= ym

y
= zn

z
. (5.3)

Moreover, from (5.1) we find readily

x + y + z = 0. (5.4)

It is remarkable that this nonlinear form of the Hirota–Miwa equation does not contain the
parameters a, b, c that appear in the bilinear form. As we have explained in the introduction,
it is possible with the adequate gauge to bring the coefficients a, b, c to any value, but such a
gauge will leave the nonlinear system invariant. Still, as these gauge transformations do not
map the vacuum solutions for different gauges of the Hirota–Miwa equation into each other,
the solutions of the nonlinear equation possess some extra (internal) parametric freedom
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Figure 1. Plot of the function x(0,m, n) corresponding to τ (2) with parameter values a = 1,

b = 3, c = 2, A1 = i, A2 = A∗
1 = −i, D1 = D2 = 0. The range of the plot is: (m, n) ∈

[−13, 13] × [−11, 11].

due to the explicit dependence of the τ functions on the specific gauge a, b, c they were
constructed for.

As a matter of fact, we can eliminate two of the variables and obtain the nonlinear
expression of the Hirota–Miwa equation in terms of, say, x:

xkmxkmmxkmnxnn − xkmxkmmxknnxmn − xkmmxkmnxmmxnn − xkmmxknxknnxmn

+ xkmmxknnxmmxmn + xkmmxknnx
2
mn + xkmmxknnxmnxnn − xkmmxmnxmnnxnn

− x2
kmnxmmxnn + xkmnxknxknnxmm − xkmnxknnxmmxnn + xkmnxmmxmmnxnn

+ xkmnxmmxmnnxnn − xknnxmmxmmnxmn = 0. (5.5)

In order to illustrate the behaviour of the solutions of (5.5) we present in figure 1 below such
a solution for x obtained with a quadratic τ given by equation (2.3) and with parameters such
that L2 = L∗

1.
As we can assess from this plot the solution is well localized in space and decreases as

an inverse square as m or n go to infinity (after subtraction of the vacuum x = 1). Taking
L2 = L∗

1 ensures that the first term in (2.3) is positive but has as a consequence that M12 (from
(2.4)) is negative. Thus τ may have a zero which would in principle lead to a diverging x.
In that sense, these solutions are analogous to the singular solutions of KPII which is indeed
the continuous limit of HM. Still, since we are looking for a solution on a lattice it is possible
(and figure 1 is an example of this) to choose the parameters so as not to have any root of τ

on the lattice points and guarantee the finiteness of x on the lattice by imposing that M12 and
L1L2 = |L1|2 be irrationally related for all integers k,m, n.

6. Conclusion

In this paper we have investigated a particular class of solutions of the Hirota–Miwa (discrete
KP) equation. These solutions, where the τ -function is polynomial, are the analogues of the
ones obtained in the continuous case and which give rise to the lump solutions for KPI. Despite
the fact that the straightforward continuous limit of HM leads to KPII (which does not possess
lumps) our solutions may be constrained to be finite (and thus really lump-like) on the lattice
points (but there is no way to prevent singularities at the continuous limit).
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Three different approaches were presented for the construction of the solutions. The first
was a direct method which can also be viewed as a construction of the polynomial solution
by a special limit of the soliton one. The second and third methods consisted in representing
the solution as a determinant, Grammian and Casorati respectively. We complemented our
analysis by the derivation of the Hirota–Miwa in nonlinear form (with the adequate ansatz)
and gave a graphical representation of a lump-like solution.

The methods we presented in this paper could be extended to other multidimensional
lattice equations, which will be the object of some future work of ours.
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